"Az-buki" National Publishing House
Ministry of Education and Science
Wikipedia
  • Login
  • Registration
Mathematics and Informatics
Няма резултати
Вижте всички резултати
  • Main Page
  • About the journal
  • Submit your manuscript
  • Editorial Board Members
  • Contents
  • Guidelines
    • Guide for Authors
    • Reviewer's Guide
  • Publishing Ethics
  • Contact
  • Subscribe now
  • en_US
  • Main Page
  • About the journal
  • Submit your manuscript
  • Editorial Board Members
  • Contents
  • Guidelines
    • Guide for Authors
    • Reviewer's Guide
  • Publishing Ethics
  • Contact
  • Subscribe now
  • en_US
Няма резултати
Вижте всички резултати
Mathematics and Informatics
Няма резултати
Вижте всички резултати
  • Home
  • Editions
Main Page Uncategorized

Optimization vs Boosting: Comparison of Strategies on Educational Datasets to Explore Low-performing at-risk and Dropout Students

„Аз-буки“ by „Аз-буки“
05-12-2025
in Uncategorized
A A

Ranjit Paul1), Asmaa Mohamed2), Peren Canatalay3), Ashima Kukkar4), Sadiq Hussain1), Arun Baruah1), Jiten Hazarika1), Silvia Gaftandzhieva5), Esraa Mahareek2), Abeer Desuky 2), Rositsa Doneva5)
1)Dibrugarh University, Dibrugarh (India)
2)Al-Azhar University (girls branch), Cairo (Egypt)
3)Istinye University, Istanbul (Turkey)
4)Chitkara University, Punjab (India)
5)University of Plovdiv “Paisii Hilendarski”, Plovdiv (Bulgaria)

https://doi.org/10.53656/math2025-6-4-obc

Abstract. The paper proposes a comprehensive student academic performance prediction approach by integrating machine learning with metaheuristic optimization. Initial models (Logistic Regression, Decision Tree, Random Forest, MLP) were refined using boosting techniques (Gradient Boosting, XGBoost, LightGBM), with XGBoost achieving 95.59% accuracy. Eight modern optimization algorithms were applied for feature selection to enhance model efficiency and interpretability, with the Grey Wolf Optimizer and the Heap-Based Optimizer outperforming others in key metrics. Support
Vector Machine algorithms applied after feature selection strengthened the predictive capability of the selected feature subsets. The research outcomes demonstrate that uniting boosting approaches with feature selection algorithms enables the creation of reliable and scalable predictive models that detect student success and failure earlier.
Keywords: Machine Learning, Optimization Algorithms, Educational Data Mining, Ensemble Models, Boosting Algorithms.

Log in to read the full text Your Image Description

Свързани статии:

Default ThumbnailExploring the Nexus of Psychological Safety and Physical Health in the Workplace: A Machine Learning Augmented Study Default ThumbnailArtificial Intelligence in Cybersecurity: Rigorous Critical Review, Methodological Challenges and Future Research Directions Default ThumbnailPredicting Student Academic Performance: Modern Approaches and Techniques Default ThumbnailThe Integration of Digital Technologies in Secondary Science Education
Tags Boosting AlgorithmsEducational Data MiningEnsemble Modelsmachine learningOptimization Algorithms

Последвайте ни в социалните мрежи

shareTweet
Previous article

Математическо моделиране в първи гимназиален етап: изграждане на междупредметни връзки между математика, физика, биология и информационни технологии

Next article

Artificial Intelligence as a Tool for Pedagogical Innovations in Mathematics Education

Next article

Artificial Intelligence as a Tool for Pedagogical Innovations in Mathematics Education

Годишно съдържание на научно списание "Математика и информатика", година LXVIII, 2025

Изследователските висши училища остават 12

Изследователските висши училища остават 12

Последни публикации

  • Годишно съдържание на научно списание „Математика и информатика“, година LXVIII, 2025
  • Сп. „Математика и информатика“, книжка 6/2025, година LXVIII
  • Mathematics and Informatics, Number 5/2025, Volume 68
  • Mathematics and Informatics, Number 4/2025, Volume 68
  • Mathematics and Informatics, Number 3/2025, Volume 68
  • Mathematics and Informatics, Number 2/2025, Volume 68
  • Mathematics and Informatics, Number 1/2025, Volume 68
  • Годишно съдържание сп. „Математика и информатика“, том 67 (2024 г.)
  • Mathematics and Informatics, Number 6/2024, Volume 67
  • Mathematics and Informatics, Number 5/2024, Volume 67
  • Mathematics and Informatics, Number 4/2024, Volume 67
  • Mathematics and Informatics, Number 3/2024, Volume 67
  • Mathematics and Informatics, Number 2/2024, Volume 67
  • Mathematics and Informatics, Number 1/2024, Volume 67
  • Годишно съдържание сп. „Математика и информатика“, том 66 (2023 г.)
  • Mathematics and Informatics, Number 6/2023, Volume 66
  • Mathematics and Informatics, Number 5/2023, Volume 66
  • Mathematics and Informatics, Number 4/2023, Volume 66
  • Mathematics and Informatics, Number 3/2023, Volume 66
  • Mathematics and Informatics, Number 2/2023, Volume 66
  • Mathematics and Informatics, Number 1/2023, Volume 66
  • Annual Contents of Mathematics and Informatics, vol.65/ 2022

София 1113, бул. “Цариградско шосе” № 125, бл. 5

+0700 18466

izdatelstvo.mon@azbuki.bg
azbuki@mon.bg

Полезни линкове

  • Къде можете да намерите изданията?
  • Вход за абонати
  • Main Page
  • Contact
  • Subscribe now
  • Projects
  • Advertising

Az-buki Weekly

  • Вестник “Аз-буки”
  • Subscribe now
  • Archive

Scientific Journals

  • Strategies for Policy in Science and Education
  • Bulgarian Language and Literature
  • Pedagogika-Pedagogy
  • Mathematics and Informatics
  • Natural Science and Advanced Technology Education
  • Vocational Education
  • Istoriya-History journal
  • Chuzhdoezikovo Obuchenie-Foreign Language Teaching
  • Filosofiya-Philosophy

Newsletter

  • Accsess to public information
  • Условия за ползване
  • Профил на купувача

© 2012-2025 Национално издателство "Аз-буки"

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
en_US
bg_BG en_US
  • Login
  • Sign Up
Няма резултати
Вижте всички резултати
  • Main Page
  • About the journal
  • Submit your manuscript
  • Editorial Board Members
  • Contents
  • Guidelines
    • Guide for Authors
    • Reviewer's Guide
  • Publishing Ethics
  • Contact
  • Subscribe now
  • en_US

© 2012-2025 Национално издателство "Аз-буки"